MATHEMATICAL MODELING OF POLYMER MELT CRYSTALLIZATION
WITH THE PHASE TRANSITION VELOCITY TAKEN INTO ACCOUNT
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A model is proposed for melt crystallization taking account of the heat transfer and
phase transition rates. The adequacy of the model is shown by experimental data.

It is assumed in the mathematical description of the melt crystallization processes of
low-molecular-weight compounds that the phase transition proceeds at high velocity [1-3].
For polymer systems [4-6] a noticeable phase transition velocity is observed during super-
cooling the melt 10-50° relative to the equilibrium melting point Ty, while the characteristic
phase transition time is 10'-10° sec. The characteristic heat transfer time R?/a, with the
governing dimension of the crystallization domain, R = 1073-10"t m, say, is on the order of
101-10° sec. Therefore, the crystallization rate can be delimited by both the phase transi-
tion velocity (kinetic domain) and the heat transfer velocity (the thermal domain is the
formation of the mobile phase transition boundary) or by both simultaneously (mixed domain).
The thermal domain case is ordinarily associated with the Stefan problem [1-3].

Let us perform a phenomenological analysis. We introduce the degree of completeness of
the phase transition (0 < 6 < 1), which we shall consider as a local quantity by giving it the
field ©(r, 1). Such an approach can be considered legitimate since the characteristic dimen-
sion of the crystalline formations is 107® m [4, 7] while the dimension of the crystallization
domain is 1073-10"! and the function © can be considered continuous in space. In this situa-
tion, the equations of the kineties of the phase transition and the heat transfer should be
solved jointlywith the appropriate boundary and initial conditions.

Taking account of the liberation of the heat of phase transition the heat transfer
differential equation can be written in the form
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The change in the thermophysical characteristics during the phase transition must be
taken into account in this equation. Let us use the two-phase model [6]

P (8) = pa (1 —0) 4 px0® = pa (1 + 5,0); (2)
c(0) = ¢, (1 +8.0); L(8) =14, (1+8,0),

where 8, = (Px— Pa)/Pss O = (x—Ca)/Ca; Oy = (My—A)/A,, and we give the linear dependence of the
heat of the phase transition on the temperature [5]

Ahy = AT Tr,. (3)
Taking (2) and (3) into account, (1) can be transformed into
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We describe the kinetics of the phase transition by the following integral equation
(4, 8]
0 for v,
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For a nonisothermal phase transition process the constant K, can be represented in the

form
K(T %?)zK(T)[I“T(E_T_ZTF%E’ (6)

where
K(T) = K, exp [_7‘(_7‘1,?%:7‘_);] (7)

is a constant of the phase transition velocity uxer isothermal conditions. The dependence of
Kn on the rate of change of the temperature is explained by the diminution of the critical
dimensions of the crystalline seed as the temperature diminishes, which is associated with
the additional rate of stable seed formation.

For the one-dimensional case and the symmetric problem of heat transfer with boundary
conditions of the third kind [2], we represent the mathematical description of the crystalli-
zation process by the following system of integrodifferential equations by introducing the
dimensionless coordinate X = r/R and the time Fo = ayt/R?:
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Fig. 1. Design profiles of the degree of completeness: a) plate, b)
sphere; 1) R = 0.004 m (K* = 4.0); 2) R = 0.016 m (K* = 64.0). Numbers
on the curves are the time in sec.

Fig. 2. Comparison of the computed (curves) and experimental (points)
values of the temperature for crystallization of a urethane polyester:
1) along the cylinder axis; 2) at a distance of 0.008 m from the axis;
3) 0.012 m from the axis.

The criterion K* is the ratio between the characteristic heat transfer time R2/a, and
the characteristic time of the phase transition process K;!/M. The extreme cases K¥ - « and
K* > 0 will correspond to the progress of crystallization in the thermal and kinetic domains,
respectively, If the temperature of the cooling medium is a given function of time, then
the system of equations (8)-(13) is closed and can be solved numerically. Otherwise, it is
necessary to have still another equation for T.. For instance, let us consider the case for
which the polymer melt in the form of spherical granules, a cylindrical bar, or sheet and a
cooling medium move in the displacement mode. The medium is heated here because of cooling
of the polymer.  Analogously to what was done in [9], an ordinary differential equation can
be obtained for To(t) and written in the dimensionless variables

dTe _ 1+46,0(, Fo) aT(l, Fo)! .
dFo v ox
Tc (0) = Tc,i 2
where
Gc~C<c
(14+T) Gen

(the plus sign corresponds to direct flow motion of the polymer and the cooling medium, and
the minus to the opposite).

A finite-difference method is used for the numerical solution of the system (8)-(13).
In principle, the derivatives 80/3Fo and 99/3X in (8) can be evaluated analytically by
applying the rule of differentiating an integral with respect to a parameter to the relation-
ship (9). However such a means of solution is awkward enough. Consequently, a difference
approximation of the derivative of both the temperature and of the degree of completeness is
introduced, where the time derivative of © is evaluated in one step hpy with a lag as compared
to the time derivative of the temperature. For the relationship hpy/h2 < 0.3 of the time
step and the coordinate step the numerical solution of (8)-(13) is stable.

Cooling of the melt at a given point to the melting temperature T, precedes the phase
transition process and the analysis is performed up to this time Fop without using the kine-
tic equations (9)-(11). Starting with the time value Fop(X) determined from the condition
(15) for different coordinates during the integration, the kinetic equations are introduced
into the computation.
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Fig. 3. Visually observable urethane polyester crystalli-.
zation process in a cylinder and the corresponding theore-
tical profiles of the completeness of the phase transition
[ a) t = 720, b) 1020 sec].

Computations for the crystallization of urethane polyester of molecular mass 25,000 are
represented in this paper. The following values of the parameters n = 3.5; s =2; p=3; B=
10.1 K; Ko = 1.6:107° sec > ?, t* = 114 sec; Ty = 316 K have been obtained as a result of in—
vestigating kinetics of the phase transition in isothermal [10] and nonisothermal conditions.

The thermal diffusivity coefficients were determined for the amorphous and crystalline phases
by the methods of the regular regime [2], and they are az = 0.88-1077 ard ay = 0.78-1077 m?/sec.
By using the method of integral heat balance in application to the polymer cooling and
crystallization process in a cylinder with heat insulated endfaces, we estimate the parameters
§p = —0.065 8§, = 0.05; & = 0.01; Abhp/c, = 38 K.

Variants of urethane polyester crystallization computations are presented in Fig. 1. For
R = 0.016 m (K* = 64.0), the crystallization process is characterized by a strongly inhomo-
geneous profile of © and it is possible to speak of a certain provisional phase transition
front. For R = 0.004 m (K* = 4.0) the 0 profile is more homogeneous. As computations show,
for K* < 0.1 it is possible to speak about the homogeneous progress of the crystallization
process in space (kinetic domain), while for K* > 10 the formation of a mobile phase separation
"boundary" (thermal domain) is observed. Computed and experimental dependences of the tempera-
ture on the Fourier number are represented in Fig. 2 for crystallization of a urethane poly-
ester melt in a cylinder of radius 0.016 mwith heat insulated endfaces. The temperature of
the cooling water was T, = 289, and the initial melt temperature was T, = 375°K. Good agree-
ment is observed between the theoretical and experimental data.

The theoretical © profile and the visually observable pattern of the crystallization
process are compared in Fig. 3. The experiments were performed as follows. The cylinder of
the polymer melt was placed in cooling, agitated water at the constant temprature T, = 289°K
after having been in a thermostat at a T, = 393°K temperature. After definite time intervals,
transverse cuts were made on the cylinder and photographed. The distribution of the degree of
phase transition completeness can be assessed qualitatively by the distribution of polymer
transparency along the radius of the cut. A "blurred" phase transition front is observed up to
considerable times for cylinders of radius 0.0115 (see Fig. 3) and 0.0075 m. The phase transi-
tion proceeds at all points of the polymer bulk in the concluding stage of the crystallization
process. Analogous photographs and computations performed for cylinders of less than 0.002-
0.003 m radius show that the provisional phase transition front is missing even in the initial
stages while the crystallization process proceeds in the whole polymer mass.

In conclusion we note that the theoretical and experimental results obtained yield a
foundation for considering the crystallization process within the framework of problems with
mobile phase separation boundaries only in the limit case of K* > ». For K*¥ » 0 the concept
of a phase transition front generally loses all physical meaning.

NOTATION

R, radius of the cylinder or sphere or half the plate thickness; Ty, melting point; a,
thermal diffusivity coefficient; 0@, degree of phase transition completeness; r, radius-vector;
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7, t, running time and the time of crystalline seed formation; p, density; c, specific heat

at constant pressure; A, heat conduction coefficient; T, T,, melt running and initial tempera-
tures; T, and Tc,i» running and initial temperatures of the cooling medium; Ahy, heat of
fusion; K,, K, velocity constant for nonisothermal and isothermal phase transition processes;
n, Kq, ™, B, s ate kinetic parameters; p = 2, a spherical seed; p = 3, cylindrical or
rectangular seeds; I' = 0 (plate), 1(cylinder), 2 (sphere); 1y, time to reach the melting point
at a given point; Gg, ¢, mass flow rate and the specific heat of the cooling agent; Gy, mass
flow rate of the polymer melt; a and k, subscripts denoting the amorphous and crystalline
phases of the polymer, respectively.
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